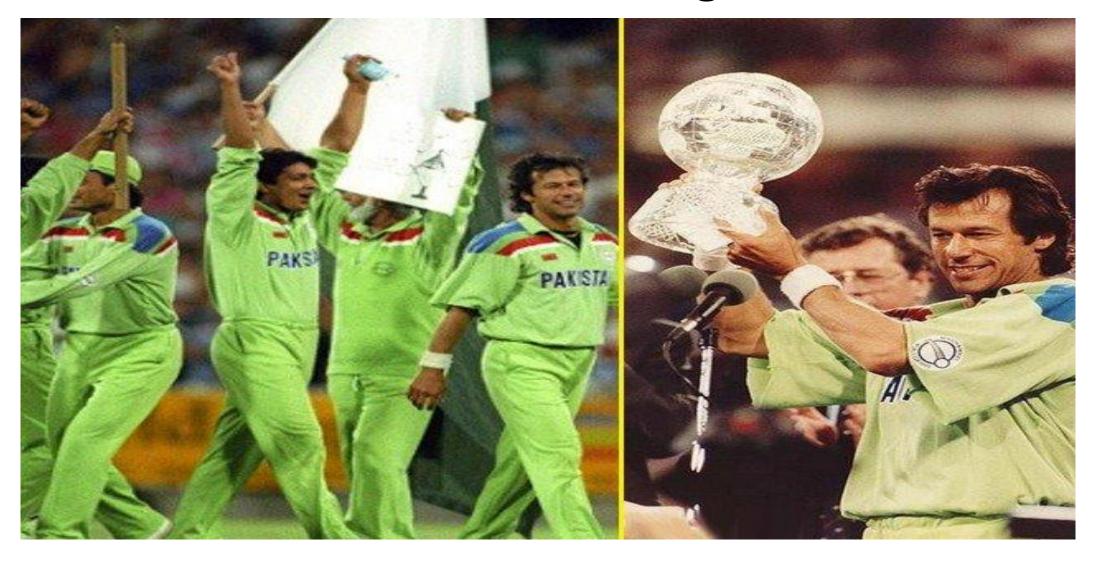

Electronic Health Records; A Quality improvement Strategy

Development of an in-house hospital information system in a hospital in Pakistan

Ayesha Aslam

Components



- 2. Association
- 3. Hospital Structure

- 1. Objectives
- 2. Development
- 3. Methodology

- 1. Results
- ✓ Cost reduction
- √ QI
- 2. Summary points

This is how it all began.....

Structure of the Hospital

Clinical services

Diagnostic Services

Pharmacy

Comprehensive health checkups

Research

Anesthesiology

Clinical and Radiation oncology

Clinical Radiology

Medical Oncology

Surgical Oncology

Nuclear Medicine

Pediatric Oncology

Pathology

Radiology

Nuclear Medicine

PET- CT Scan

Medication Delivery

Optimal Drug Therapy

Therapeutic Drug Monitoring

Annual Medical Exams

Follow up Exams

Routine Lab work Clinical Research
Office

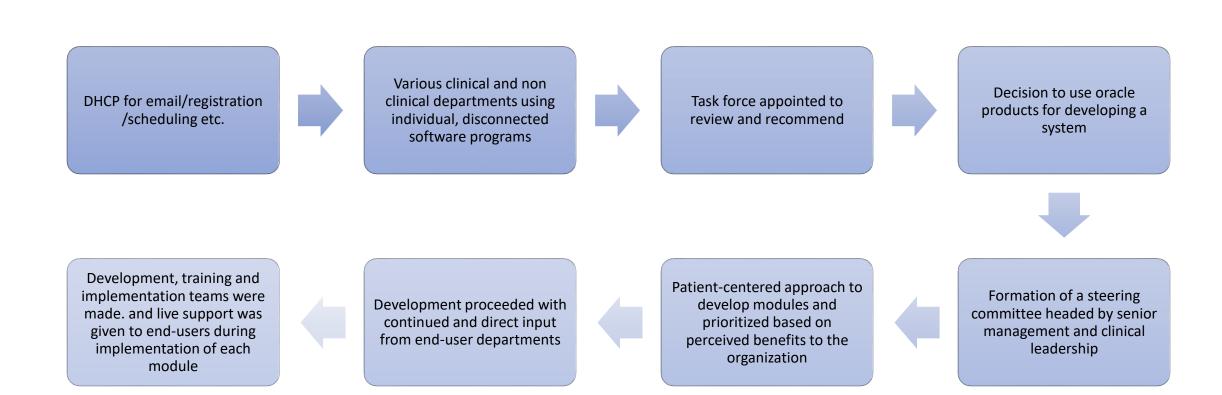
Basic Science Research Laboratory

Cancer Registry
And Clinical
Data
Management

Research Publications

Statistics ,2011

- 180 bed Hospital
- 1800 Employees
- Over 6000 patients annually


- 142,000 out patient visits
- 7600 admissions
- 7800 surgical operations
- 54,600 chemotherapy visits
- 44,500 radiation treatments
- 144,000 imaging procedures
- 3.25 million lab tests

Objectives of the study

Review:

- 1. The experience of development and implementation of an electronic hospital information system
- 2. Costs and return on investment
- 3. Assessment in improvements of key quality standards

Development Process of HIS Implementation

Key Modules and Implementation dates

Module	Implementation Date
Patient Registration and scheduling	April 2001
Patient Financial Assessment	June 2001
Human Resources module	January 2002
Physician order entry	February 2002
Pharmacy, including inventory	February 2002
Radiology process flow and reporting	April 2002
Medical Records – coding and tracking	April 2002
Pathology Modules, including machine interfacing	November 2002- February 2004
Outcome Analysis Modules for common cancers	December 2002 - January 2004
Financial modules	March 2003 – December 2004

Continued..

Module	Implementation Date
Inpatient units – admissions and Discharges	May 2003
Surgical Modules	May 2003
Blood Bank	March 2004
Critical Laboratory alerts	2005
Physician's Notes	2006
Corporate Patient billing	December 2006
Endoscopy	December 2008
Materials management, Procurement life cycle	December 2009
Radiation Oncology	December 2010
Chemotherapy	December 2011
Cardiology	December 2012

Challenges

- Resistance from staff esp. at the implementation of major modules, mainly due to
 - Inertia
 - Fear of a new system
 - Poor computer literacy
 - Poor Command over the language
 - Fear of work delays
- System Breakdowns

Solutions

- Individual discussions of expected benefits
- Use of computer expertise resources
- Implementation of individual modules carried during low activity times
- Direct documentation of service provision/billing by physicians
- Investment in an off-site server room with back up servers
- Real-time back-ups

Methods

Cost Calculation

- 1- Direct cost of the project
 - Data on development staff salaries
 - Analysis of records of purchases
 - Software licensing
 - Maintenance costs
- 2- Training costs from HR data
- 3- Calculated costs on yearly estimates of prints
 - Invoices, receipts and number of patient reports by clinical and non clinical depts.
- 4- Analysis of cost of impact of automation

Savings Calculation

- 1- Savings calculation from paper printing
- 2- Radiology films savings
- 3- Man Power

Costs

Total expenses

- Salaries and Benefits
- Hardware and maintenance
- Licensing and professional Services
- Supplies, stationary, insurance etc.

1,597,915

Savings

Total savings

- Paper Printing
- Radiology films
- Manpower

5,134,482

Results

- Total saving of the project US\$ 5.1 million
- Net saving US\$ 3.5 million (2001- 2011)
- Net Present value US\$ 3.2 million
- Pay back period 3.4 years
- IRR is 86%

Quality Improvement

Clinical pathways

Discharge summary

Specialized assessment templates

Handover/Receiving nursing templates

Incident Reporting

Adverse Drug Reaction reporting Chemo check list/verification - online

Discharge Planning module

Current State

Largely automated work-flow in all clinical departments

Patient billing-financial information accessed via rights-based access control system

External interaction limited to access to Pathology and Radiology reports etc.

Pertinent HR information, procurement, inventory, assets, as well as various financial modules are part of this hospital wide system

Maintenance and improvements have been ongoing in parallel with development

Summary Points

What was already known on the topic:

- Health information technology should lead to more efficient, safer and higher-quality care
- High cost project

What this study added to our knowledge:

- Clinical decision support system influences the interaction between the physician, patient orders with better clinical outcome
- There is a positive qualitative improvement after implementation of electronic hospital information systems
- High rate of return project

From Paper to Electronic Health Records

Paper documentation wastes the valuable time of clinicians, supervisors and front desk personnel

Paper records occupy excessive space and are difficult to manage and organize

Reporting is an overwhelming and costly process when tracking client progress on paper

Paper billing slows the reimbursement process, while being tedious and inefficient

Save space and time by storing client records in the cloud

Electronic records create cleaner and better organized work spaces, promoting better staff morale

Faster and more accurate documentation, billing and reporting saves money while leading to more efficient, less stressed staff

Both clinicians and clients can easily access health records from anywhere because data is stored in a private, secured cloud

References

- 1. C.P. Landrigan, et al., Temporal trends in rates of patient harm resulting from medical care, N. Engl. J. Med. (2010)
- 2. A.D. Black, J. Car, C. Pagliari, C. Anandan, K. Cresswell, et al. The impact of eHealth on the quality and safety of healthcare: a systematic overview, PLoS Med. 8 (1) (2011) e1000387
- 3. C. Main, T. Moxham, J.C. Wyatt, J. Kay, R. Anderson, K. Stein, Computerised decision support systems in order communication for diagnostic, screening or monitoring test ordering: systematic reviews of the effects andcost-effectiveness of systems, Health Technol. Assess. 14(October (48)) (2010) 1–227
- 4. J.A. Blaya, H.S. Fraser, B. Holt, E-health technologies show promise in developing countries, Health Aff. (Millwood) 29(2010) 244–251
- 5. R. Amarasingham, et al., Clinical information technologies and inpatient outcomes: a multiple hospital study, Arch.Intern. Med. 169 (2) (2009) 108,

Thank you!

Questions??